Sasquatch for Ubuntu

I am an avid user of binwalk since it automates the initial reverse engineering work. It identifies the compression, if any, and file format of a given firmware fairly easily once you take care of the false positives.

Last week I built a virtual machine (VM) using a minimal install of Xubuntu Linux. My last Debian-based VM had become bloated and slow, so it was time to clean up. Surprisingly, I couldn’t get Sasquatch to compile for Ubuntu. Sasquatch is a helper tool for non-standard Squash file systems,  rampant in the Internet-of-Things (IoT) realm. It seems the patches made for squashfs 4.3 just won’t compile under Ubuntu Linux, likely due to the liblzma library included in the operating system.

Trying to fix the patches soon led to endless sequence of additional compiling errors, so I took the easy way out: compiled Sasquatch on Debian and just used the binary in by Xubuntu VM. It worked!

Anyone in the same situation can download the pre-compiled Sasquatch binary here. Happy reverse engineering!

Submarine Command System

A press release from BAE Systems announced the installation of the Submarine Command System Next Generation (SMCS NG) on twelve nuclear submarines of the Royal Navy, effectively ending the conversion of the seven Trafalgar-class submarines, four Vanguard-class submarines and one Swiftsure class[1].

The new command system is based on COTS hardware and software products. It uses mainstream PCs and Windows as supporting components. All computers are connected with on a LAN by an Ethernet network using fiber-optic cable. According to The Register, the system will mostly be based on Windows XP[2] although in was initially decided it would be based on Windows 2000.

The role of this system is to store and compile data from various sensors in order to present tactical information for the leadership. It also controls the weaponry:

SMCS NG is designed to handle the growing volume of information available in modern nuclear submarines and to control the sophisticated underwater weapons carried now and in the future. Its core capability is the assimilation of sensor data and the compilation and display of a real time tactical picture to the Submarine Command Team[3].

The SMCS NG system is the descendant of the previous SMCS system that was proposed back in 1983, when the U.K decided to build a new command system for the then-new Trident class. Before, all electronics were custom built by Ferranti. The SMCS would use COTS material to minimize the costs and become fewer dependants on one company. The architecture of the command system was modular and was written in Ada 83. The core of the system contains an Input/Output computer node, a computer that process data from the sensors and weapons systems. There is also the central node, which is used for processing all the data. Each of the central nodes are duplicated to provide of fault-tolerance, with each being dual modular tolerant, which means that hardware components are working in parallel in case one becomes defective. The dual central nodes are connected to each other and they are also connected to Multi Function Consoles, a Main Tactical Display and two Remote Terminals, which provide the Human Computer Interface. The first phase of the project was to install the SMCS on the Vanguard class submarines.

In 1990, it was decided to extend the SMCS to other submarine classes and that the new command system would use UNIX as its base operating system. Because of the Ada architecture, problems arose when the technicians tried to map the SMCS to run-time processes of UNIX. Solaris and SPARC machines were finally selected for Multi Function Consoles. The central nodes kept their original architecture in Ada.

SMCS Multi Function Monitor in a Vanguard Class Submarine
SMCS Multi Function Monitor in a Vanguard Class Submarine

In 2000, the project was completely own by BAE Systems and the move from SPARC computers to PCs. The switch for the operating system was more difficult, as management preferred Windows while the engineers promoted the use of variants of UNIX such as BSD, Linux or Solaris. The main argument for the engineers was that with UNIX, it would be possible to remove all the extra code unneeded for the submarines operations, thus making it more secure. However, the management point of view prevailed and thus was created the “Windows for Warships” label.

Windows was chosen even after the USS Yorktown accident in 1997, in the US. The ship was crippled after the sysadmin entered invalid data into the database thought the Remote Database Manager.[4]

Insert any jokes about Windows controlling nuclear subs into the comments. Thank you.

Clippy Launch Warning Blue Screen of Death

See also:

SMCS“, AllExperts, (accessed on December 17, 2008)

Submarine Command System (SMCS)“, Ultra Electronics, (accessed on December 17, 2008)

Operating Systems Contracts, Trusted Software?“, Richard Smedly, Linux Format, March 2005, (accessed on December 17, 2008)

Development Drivers in Modern Multi-function Consoles and Cabinets“, Armed Forces International, (accessed on December 17, 2008)

[1] “Royal Navy’s Submarine Command System Installation Programme Completes Ahead of Time”, BAE Systems, December 15, 2008, (accessed on December 17, 2008)

[2] “Royal Navy completes Windows for SubmarinesTM rollout”, Lewis Page, The Register, December 16, 2008, (accessed on December 17, 2008)

[3] Ibid.

[4] “Operating Systems Contracts, Trusted Software? “, Richard Smedly, Linux Format, March 2005, p.72

China’s Red Flag Linux

Red Flag Linux Logo
Red Flag Linux Logo

Two days ago, the Inquirer post an article on a new law passed in the Chinese city of Nanchang, in the Jiangxi province, to replace pirated copies of Windows in Internet cafes by legitimate software[1]. The alternative proposed to the cafes is the Red Flag Linux distribution, which prompted fears of snooping by U.S Radio Free Asia. The radio quoted the director of the China Internet Project, Xiao Qiang as saying that “cafes were being required to install Red Flag Linux even if they were using authorised copies of Windows[2]“. According to an official of the Nanchang Cultural Discipline Team, the transition from Windows to Red Flag already started in the 600 Internet Cafes of the city[3] and not across all of China unlike many titles claim.

Short History of Red Flag Linux

Red Flag Linux was created by the Software Research Institute of the Chinese Academy of Sciences in 1999 and was financed by a government firm: NewMargin Venture Capital. The distro is now distributed to government offices and business by Red Flag Software Co[4]. The goal of the Chinese government was to reduce the dominance of Microsoft over the operating system market. It therefore invested in Red Flag Software through a venture capital investment company owned by the Ministry of Information Industry called CCIDNET Investment[5].

At first, the OS was exclusively in Chinese and restricted itself to the Chinese market. In 2003, then the company developed an English version for international markets. This project received further help after Hewlett Packard concluded a plan to provide Red Flag with help in various field to market its operating system around the world[6]. As many companies took interest in the Chinese economic boom, Red Flag signed partnerships with various western companies like IBM, Intel, HP, Oracle[7] who wanted to open a new market into China. That way, Real networks among others, distributed its media software with Red Flag[8].

According to IDC, a market-research company, the revenue of Red Flag Software Co. totalled US$8.1 million in 2003. There were 24 000 server operating system shipments accounting for $5.9 million in revenue[9]. In 2006, Red Flag Software was the top Linux distributing company in China with over 80% of the Linux desktop market[10]. After a while, new versions of Red Flag were made for mobile devices[11] and embedded devices[12]. It can also be found on various server sold across China by Dell.

Therefore it seems that Red Flag Linux, after a slow period in the dot-com crash, is alive and well nowadays in China. The operating system changed quite a bit from its beginnings in 1999 up to now but we can expect the use of this distribution to grow in the upcoming years, as prices for proprietary OS such as Windows can be quite prohibitive for most of the Chinese population. The Red Flag Linux distro can be downloaded for free from Red Flag Software Co. (see the end of this article for the links) while Vista Home Basic was sold at renminbi (US$65.80) in 2007[13]

Technical Aspects

According to this early reviewer who tested the OS back in 2002[14], the first Red Flag 2.4 Linux OS was based on the Red Hat distro. It came basically with the same options such as X11, the KDE interface as default and used the Reiser file system. Interestingly, no root password were needed and seemed to be the default account. It came with the standard user applications such as XMMS.

Since then, Red Flag Linux has switch from Red Hat to Asianux 2.0 as its base distribution[15]. A root password needs to be specified at the installation and is now available on Live CD. Also, don’t expect a completely English system, while the most important parts of it should be English, some may still be in Mandarin. XMMS has long been replaced with KDE’s multimedia tools such as KsCD, JuK, Dragon Player, and KMix. Other software you can find on the “Olympic” beta version distribution, released last September[16]:

KAddressBook Kopete
Kontact Krfb
KOrganizer KNode
Firefox Akregator
KMail Akonadi

According to the reviewer, and by looking at the English website, is does look like the English version is not maintained as much as the Chinese version. Therefore I believe the Chinese version might contain more features and less bugs. It might even contain office software such as Red Office.

This operating system is certainly one to watch, not really for its technical aspects or usefulness, but mainly because it might spread across China as businesses and governmental agencies adopt Red Flag Linux. If an attack should be ported against Chinese communication infrastructure, this distribution would certainly be one of the targets to analyze in order to find holes and exploits. Unfortunately, finding information about this Linux is tricky, mainly due to the language barrier. Using software translation is amusing but useless. It is hard to determine if the OS contains any modification for spying or snooping, as one would need to go through the source of a large part of the OS (I wish I had time to do that). But then, it’s less hard than to examine closed source software. Snooping can come from everywhere also, they might be better off with Red Flag Linux than Sony software afterall[17]

If anyone has information, please share it, as information should always be shared. In the meantime, a desktop version of Red Flag Linux is available here. And if you can understand Mandarin, maybe you could visit this page.

Enrich your Mandarin Vocabulary: 红旗 = Red Flag

See also:

Red Flag Software Co., (Mandarin language)

Red Flag Software Co., (English language)

Red Flag Linux may be next on IBM’s agenda“, James Niccolai, Network World, September 22, 2006, (accessed on December 4, 2008)

Dell flies Red Flag Linux in China“, Michael Kanellos, ZDNet, December 3, 2004, (accessed on December 4, 2008)

With HP’s help, China’s Red Flag Linux to step onto global stage“, Sumner Lemon, ComputerWorld, September 2, 2003,,10801,84602,00.html (accessed on December 5, 2008)

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to Ma.gnoliaAdd to TechnoratiAdd to Furl

[1] “Chinese ordered to stop using pirate software”, Emma Hughes, The Inquirer, December 3, 2008, (accessed on December 4, 2008)

[2] “New fears over cyber-snooping in China”, Associated Press, The Guardian, December 4, 2008, (accessed on December 4, 2008)

[3] “Chinese Authorities Enforce Switch from Microsoft”, Ding Xiao, translated by Chen Ping, Radio Free Asia Mandarin Service, December 2, 2008, (accessed on December 4, 2008)

[4] Ibid.

[5] “Raising the Red Flag”, Doc Searls, Linux Journal, January 30, 2002, (accessed on December 4, 2008)

[6] “English version of China’s Red Flag Linux due soon”, Sumner Lemon, InfoWorld, September 8, 2003, (accessed on December 4, 2008)

[7] “Red Flag Linux”, Operating System Documentation Project, January 13, 2008, (accessed on December 4, 2008)

[8] “RealNetworks signs up Red Flag Linux”, Stephen Shankland, CNet News, October 6, 2004, (accessed on December 4, 2008)

[9] “China’s Red Flag Linux to focus on enterprise”, Amy Bennett, IT World, August 16, 2004, (accessed on December 4, 2008)

[10] “Red Flag Linux 7.0 Preview (Olympic Edition)”, Begin Linux Blog, August 15, 2008, (accessed on December 4, 2008)

[11] “Introduction to MIDINUX”, Red Flag Software, June 2007, (accessed on December 4, 2008)

[12] “Car computer runs Red Flag Linux”, LinuxDevices, November 13, 2007, (accessed on December 4, 2008)

[13] “Update: Microsoft cuts Windows Vista price in China”, Sumner Lemon, InfoWorld, August 3, 2007, (accessed on December 5, 2008)

[14] “Red Flag, China’s home-grown Linux distribution, is a good start”, Matt Michie,, February 22, 2002, (accessed on December 4, 2008)

[15] “Red Flag Linux Desktop”, (accessed on December 5, 2008)

[16] “Red Flag Linux Olympic Edition fails to medal”, Preston St. Pierre,, September 11, 2008, (accessed on December 5, 2008)

[17] “Real Story of the Rogue Rootkit”, Bruce Schneier, Wired, November 17, 2005, (accessed on December 5, 2008)

Integrity OS to be Released Commercially

The Integrity Operating System, an OS with the highest security rating from the National Security Agency (NSA) and used by the military, will now be sold to the private sector by Integrity Global Security, a subsidiary of Green Hills Software. The commercial operating system will be based on the Integrity 178-B OS, which was used in the 1997 B1B Bomber and afterwards in F-16, F-22 and F-35 military jets. It is also used in the Airbus 380 and Boeing 787 airplanes[1].

The Integrity 178-B OS has been certified EAL6+ (Evaluation Assurance Level 6) by the NSA and is the only OS to have achieve this level of security for now. Most commercial operating systems such as Windows and Linux distributions have an EAL4+ certification. The EAL is a certification which indicates a degree of security of the operation system, level 1 is about applications having been tested but where a security breach would not incurs serious threats. A level 7, the highest level, contains applications strong enough to resist a high risk of threats and can withstand sophisticated attacks. Only one application has a level 7 certification and it is the Tenix Data Diode by Tenix America[2].

The Integrity OS can run by itself or with other operating systems on top, such as Windows, Linux, MacOS, Solaris, VxWorks, Palm OS and even Symbian OS. Each OS being in is own partition to limit the eventual failures and security vulnerabilities to the OS only.



Protection Profile

Security Level


Operating System


EAL 6+


Operating System


EAL 4+

PR/SM LPAR Hypervisor





Operating System

Not evaluated

EAL 4+

Solaris (and Trusted Solaris)

Operating System


EAL 4+


Operating System






EAL 4+

Windows Vista

Operating System

Not evaluated

EAL 4+

Windows XP

Operating System


EAL 4+



Not evaluated

EAL 4+

Main Operating Systems with the type of protection profile used and the assigned EAL[3]

The main feature of the Integrity OS is the use of the Separation Kernel Protection Profile (SKPP). A protection profile (PP) is a document used by the certification process, which describes the security requirements for a particular problem. The SKPP is a standard developed by the NSA and in which the requirements for a high robustness operating system are defined and are based on John Rushby‘s concept of Separation Kernel. This concept can be summarized as:

… a single-processor model of a distributed system in which all user processes are separated in time and space from each other. In a distributed system, the execution of each process takes place in a manner independent of any other[4]

Basically, the concept is about a computer simulating a distributed environment, and each process is independent from the other, thus preventing that a corrupted or breached application gives inavertedly access to restricted resources, as it is often the case in privilege escalation in other commercial OS.

Schema of the Integrity 178B Operating System
Schema of the Integrity 178B Operating System

What makes SKPP standard so secure is that it requires a formal method of verification during the development. Furthermore, the source code is examined by a third party, in this case, the NSA.

SKPP separation mechanisms, when integrated within a high assurance security architecture, are appropriate to support critical security policies for the Department of Defense (DoD), Intelligence Community, the Department of Homeland Security, Federal Aviation Administration, and industrial sectors such as finance and manufacturing.[5]

Of course, the OS might be conceived for security and toughness, but in the end, it all depends on how it is used and configured…That’s going to be the real test. As far as I believe the people who verified the OS are competent, and all the expensive tests the company has paid to check their operating system are rigorous, the real exam would be to release it in the wild so that hackers from all around the world can have a try at it. Hopefully, we might be able to play with this OS someday…

See also:

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness“, Information Assurance Directorate, June 29, 2007

Formal Refinement for Operating System Kernels, Chapter 4 p. 203-209“, Iain D. Craig, Springer London, Springer Link, July 2007

Separation kernel for a secure real-time operating system“, Rance J. DeLong, Safety Critical Embedded Systems, February 2008, p.22

Controlled Access Protection Profile“, Information Systems Security Organization, National Security Agency, October 8, 1999

[1] “Secure OS Gets Highest NSA Rating, Goes Commercial”, Kelly Jackson Higgins, DarkReading, November 18, 2008, (accessed on November 19, 2008)

[2] “TENIX Interactive Lin k solutions”, TENIX America, (accessed on November 19, 2008)

[3] “The Gold Standard for Operating System Security: SKPP”, David Kleidermacher, Integrity Global Security, 2008, (accessed on November 19, 2008)

[4] “Formal Refinement for Operating System Kernels”, Iain D. Craig, Springer London, Springer Link, July 2007, p. 203

[5] “U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness”, Information Assurance Directorate, June 29, 2007, p.10